Biosynthesis of selenate reductase in Salmonella enterica: critical roles for the signal peptide and DmsD

نویسندگان

  • Katherine R. S Connelly
  • Calum Stevenson
  • Holger Kneuper
  • Frank Sargent
چکیده

Salmonella enterica serovar Typhimurium is a Gram-negative bacterium with a flexible respiratory capability. Under anaerobic conditions, S. enterica can utilize a range of terminal electron acceptors, including selenate, to sustain respiratory electron transport. The S. enterica selenate reductase is a membrane-bound enzyme encoded by the ynfEFGH-dmsD operon. The active enzyme is predicted to comprise at least three subunits where YnfE is a molybdenum-containing catalytic subunit. The YnfE protein is synthesized with an N-terminal twin-arginine signal peptide and biosynthesis of the enzyme is coordinated by a signal peptide binding chaperone called DmsD. In this work, the interaction between S. enterica DmsD and the YnfE signal peptide has been studied by chemical crosslinking. These experiments were complemented by genetic approaches, which identified the DmsD binding epitope within the YnfE signal peptide. YnfE signal peptide residues L24 and A28 were shown to be important for assembly of an active selenate reductase. Conversely, a random genetic screen identified the DmsD V16 residue as being important for signal peptide recognition and selenate reductase assembly.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of residues in DmsD for twin-arginine leader peptide binding, defined through random and bioinformatics-directed mutagenesis.

The twin-arginine translocase (Tat) system is used for the targeting and translocation of folded proteins across the cell membrane of most bacteria. Substrates of this system contain a conserved "twin-arginine" (RR) motif within their signal/leader peptide sequence. Many Tat substrates have their own system-specific chaperone called redox enzyme maturation proteins (REMPs). Here, we study the b...

متن کامل

Unique Photobleaching Phenomena of the Twin-Arginine Translocase Respiratory Enzyme Chaperone DmsD

DmsD is a chaperone of the redox enzyme maturation protein family specifically required for biogenesis of DMSO reductase in Escherichia coli. It exists in multiple folding forms, all of which are capable of binding its known substrate, the twin-arginine leader sequence of the DmsA catalytic subunit. It is important for maturation of the reductase and targeting to the cytoplasmic membrane for tr...

متن کامل

بررسی تنوع ژنوتیپی سویه‌های بالینی سالمونلا انتریکا سروتایپ اینفنتیس به روش ریبوتایپینگ

Background and Objective: Salmonella spp. are enteric pathogens with a worldwide distribution comprising a large number of serovars characterized by different hosts and distribution. Among Salmonella spp., the number of infections and diseases caused by the serotype Salmonella enterica serovar Infantis started to increase significantly in the last decade. The aim of this study was to investigat...

متن کامل

The Hydrophobic Region of the DmsA Twin-Arginine Leader Peptide Determines Specificity with Chaperone DmsD

The system specific chaperone DmsD plays a role in the maturation of the catalytic subunit of dimethyl sulfoxide (DMSO) reductase, DmsA. Pre-DmsA contains a 45-amino acid twin-arginine leader peptide that is important for targeting and translocation of folded and cofactor-loaded DmsA by the twin-arginine translocase. DmsD has previously been shown to interact with the complete twin-arginine lea...

متن کامل

The twin-arginine leader-binding protein, DmsD, interacts with the TatB and TatC subunits of the Escherichia coli twin-arginine translocase.

The twin-arginine translocase (Tat) pathway is involved in the targeting and translocation of fully folded proteins to the inner membrane and periplasm of bacteria. Proteins that use this pathway contain a characteristic twin-arginine signal sequence, which interacts with the receptor complex formed by the TatBC subunits. Recently, the DmsD protein was discovered, which binds to the twin-argini...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 162  شماره 

صفحات  -

تاریخ انتشار 2016